Abstract

Groundwater samples (54) collected from different geological units (alluvium, Tertiary, ophiolite, and Hawasina) located in the transboundary groundwater basin in north Oman at the United Arab Emirates (UAE) borders were analyzed for general hydrochemistry and water isotopes, and subsets thereof were analyzed for 14C and 3H and 87Sr/86Sr. The chemical composition, percentage of modern carbon (pmc), δ2H, δ18O, and 87Sr/86Sr of the groundwater in the study area progressively change from the recharge zone in the elevated area of the North Oman Mountains (NOM) to the flat plains at the UAE borders. While the water-rock interaction is the dominant process controlling the groundwater chemistry, evaporation and groundwater mixing affect the hydrochemistry at the UAE borders. Therefore, groundwater evolves from carbonate-dominant in the NOM into sodium chloride-dominant close to the UAE borders. It is also evident that groundwater lateral recharge from the ophiolites into the alluvium retains the chemical affinity of the ophiolites. Groundwater dating (high pmc), homogeneous 87Sr/86Sr ratios, and enriched δ2H and δ18O demonstrate the presence of modern recharge in the shallow zones of the ophiolites and alluvium. However, deep zones and areas at the UAE border contain older groundwater form during cooler and wetter climatic conditions as supported by the depleted δ2H and δ18O and lower 87Sr/86Sr ratios and pmc. Furthermore, the data clearly showed that modern groundwater mixes with older groundwater along the flow path from the NOM into the UAE border. Modern recharge occurs as lateral recharge from NOM and direct recharge in the plain area. The current findings support future development of aflaj system along NOM slopes and shallow wells in the plain areas.

Highlights

  • Transboundary groundwater basins, which cross countries’ borders, are normally of regional scale and represent important shared water resources

  • The cross section illustrates the evolution of the groundwater chemistry from the recharge zone in North Oman Mountains (NOM) dominated by ophiolites to the discharge zone in the plain area at the United Arab Emirates (UAE) borders dominated by alluvium cropping at the surface

  • The variation in the chemical composition of the groundwater is attributed to recharge processes, and the mineralogical composition of the hosting rocks as the mineral dissolution was found to be the main factor affecting the chemistry of the groundwater

Read more

Summary

Introduction

Transboundary groundwater basins, which cross countries’ borders, are normally of regional scale and represent important shared water resources. Proper management of these resources is fundamental for sustainability and development [1,2,3]. Groundwater in the border regions separating the Sultanate of Oman and the United Arab Emirates (UAE), near the Al Buraimi and Al Ain areas, represents an important resource for sustainable agricultural and urban development [4]. The hydrochemical study is an important component to understand the availability and nature of groundwater through identifying moisture sources and different geochemical processes that control the quality of water [6].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call