Abstract

AbstractThe introduction of Fourier transform methods has not only remarkably enhanced the sensitivity of high‐resolution NMR spectroscopy, thus allowing measurements to be made on less sensitive nuclei of the Periodic Table, but also has paved the way for the development of a large number of new experimental techniques. On the one hand, procedures already known have been improved and can now be performed more rapidly, and, on the other, completely new experimental approaches have become available. This situation resulted mainly from the introduction of programmable pulse transmitters and the separation of the experiment into preparation, evolution, and detection. In particular, the concept of two‐dimensional spectroscopy has opened up new possibilities important for the analysis of complicated spectra and is able to provide information previously not accessible. As elsewhere, optimum application of the techniques and correct interpretation of the results require sound understanding of the underlying physical principles. Since a rigorous mathematical treatment is complicated and does not necessarily improve the comprehensibility, this article attempts to give an illustrative presentation of the new pulse techniques within the framework of the Bloch vector model. After a short introduction covering the basic principles, one‐dimensional pulse techniques that can be applied using standard experimental equipment are dealt with. The main areas of application are signal assignment, sensitivity enhancement for measurements on less abundant nuclei, and selective excitation of individual resonances. Subsequently, the various techniques of two‐dimensional NMR spectroscopy are treated: these enable shift correlations for different types of nuclei to be made, the presentation of spin multiplets without overlap, and the analysis of geometrical relations as well as of chemical exchange phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.