Abstract

Palynology is one of the most reliable tools for the reconstruction of past vegetation and climate and modern pollen analogues are important for the calibration of fossil pollen assemblages. The present study analyses the pollen–vegetation relationships along a steep altitudinal gradient (2700–3680 m), in the western Higher Himalayan region. On the basis of altitude, three vegetation zones were demarcated: Zone I (2700–3100 m) is composed of mixed-temperate forest vegetation, dominated by Quercus semecarpifolia and Rhododendron arboreum; Zone II (3100–3250 m) is marked by sub-alpine forest vegetation, characterised by R. campanulatum and R. barbatum, along with Abies spectabilis and Q. semecarpifolia; Zone III (3250–3680 m) is above the tree-line (3250 m) and represented by alpine-scrub and meadows. Thirty-five surface soil samples (twenty, seven and eight from each zone, respectively) were analysed along the altitudinal transect to decode the representation of the extant vegetation in the pollen-rain. The pollen–vegetation relationship is non-linear due to the over-representation of extra-local Pinus pollen in each zone. Nonetheless, the modern pollen assemblages show a general correlation with the local broad-leaved taxa and the herbaceous elements; with the exception of Rhododendron pollen, which is under-represented. Among the non-pollen palynomorphs (NPPs), the presence of coprophilous fungal spores is compatible with the grazing activities in the area. Multivariate statistical analyses performed on the surface pollen data indicate that the dataset can efficiently distinguish the different vegetation zones across the altitudinal gradient. This work provides the modern analogues for pollen-based palaeoclimatic reconstructions for the Western-Higher Himalayan region, and would also help to decipher the inception and intensification of anthropogenic activities in the region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.