Abstract

This paper explores predicting early signals of business failure using modern models for bankruptcy prediction. It reviews how continuous operations enhance market value, strengthening competitiveness and reputation among stakeholders. The study involves medium and large companies in the Montenegrin market from 2015 to 2020, comprising 30 bankrupt and 70 financially stable firms. Logistic regression is also employed to create a logit model for early detection of bankruptcy signals in companies. This research establishes the empirical validity of modern models in predicting business failure in the Montenegrin market, particularly through logistic regression. Significant indicators, such as the Degree of Indebtedness (DI) and turnover ratio of business assets (TR), exhibit strong predictive power with a p-value less than 0.001 according to Likelihood ratio tests. The paper underscores the potential benefits of bankruptcy prediction for both internal and external stakeholders, especially investors, in enhancing the competitiveness of Montenegro's large and medium-sized companies. Notably, the research contributes by bridging the gap between theory and practice in Montenegro, as bankruptcy prediction models have not been extensively applied in the market. The authors suggest the possible applicability of the created logit model to neighboring countries with similar economic development levels. In that sense, the concept of predicting bankruptcy is positioned as integral to corporate strategy, impacting the overall reduction of bankruptcies. The paper concludes by highlighting its role as a foundation for future research, addressing the literature gap in the application of bankruptcy prediction models in Montenegro. The created logit model, tailored to the specific needs of Montenegrin companies, is presented as an original contribution, emphasizing its potential to strengthen the competitiveness of companies in the market.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.