Abstract

“Close-to-nature forest stands” are one central key in the project “Future oriented Forest Management” financially supported by the German Ministry for Science and Research (BMBF). The determination of ecological as well as economical consequences of mechanized harvesting procedures during the transformation from pure spruce stands to close-to-nature mixed forest stands is one part of the “Southern Black Forest research cooperation”. Mechanical operations of several typical forest harvesting vehicles were analysed to examine the actual soil stresses and displacements in soil profiles and to reveal the changes in soil physical properties of the forest soils. Soil compaction stresses were determined by Stress State Transducer (SST) and displacement transducer system (DTS) at two depths: 20 and 40 cm. Complete harvesting and trunk logging processes accomplished during brief 9-min operations were observed at time resolutions of 20 readings per second. Maximum vertical stresses for all experiments always exceeded 200 kPa and at soil depths of 20 cm for some vehicles and sequences of harvesting operations approached ≥500 kPa. To evaluate the impacts of soil stresses on soil structure, internal soil strengths were determined by measuring precompression stresses. Precompression stress values of forest soils at the field sites ranged from 20 to 50 kPa at soil depths of 20 cm depth and from 25 to 60 kPa at soil depths of 40 cm, at a pore water pressure of −60 hPa. Data obtained for these measured soil stresses and their natural bearing capacities proved that sustainable wheeling is impossible, irrespective of the vehicle type and the working process. Re-occurring top and subsoil compaction, increases in precompression stress values in the various soil horizons, deep rut depths, vertical and horizontal soil displacements associated with shearing stresses, all affected the mechanical strengths of forest soils. In order to sustain naturally “unwheeled” soil areas with minimal compaction, it is recommended that smaller machines, having less mass, be used to complete forest harvesting in order to prevent or at least to maintain currently minimal-compacted forest soils. Additionally, if larger machines are required, permanent wheel and skid tracks must be established with the goal of their maximum usefulness for future forest operations. A first step towards accomplishing these permanent pathways requires comprehensive planning with the Federal State Baden-Württemberg. The new guideline for final opening with skid tracks (Landesforstverwaltung Baden-Württemberg, 2003) proposes a permanent skid track system with a width of 20–40 m.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call