Abstract
Rayleigh's criterion states that it becomes essentially difficult to resolve two incoherent optical point sources separated by a distance below the width of point spread functions (PSF), namely in the subdiffraction limit. Recently, researchers have achieved superresolution for two incoherent point sources with equal strengths using a new type of measurement technique, surpassing Rayleigh's criterion. However, situations where more than two point sources needed to be resolved have not been fully investigated. Here we prove that for any incoherent sources with arbitrary strengths, a one- or two-dimensional image can be precisely resolved up to its second moment in the subdiffraction limit, i.e. the Fisher information (FI) is non-zero. But the FI with respect to higher order moments always tends to zero polynomially as the size of the image decreases, for any type of non-adaptive measurement. We call this phenomenon a modern description of Rayleigh's criterion. For PSFs under certain constraints, the optimal measurement basis estimating all moments in the subdiffraction limit for 1D weak-source imaging is constructed. Such basis also generates the optimal-scaling FI with respect to the size of the image for 2D or strong-source imaging, which achieves an overall quadratic improvement compared to direct imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.