Abstract

The article analyzes the modern theory and practice of pipeline transport of bituminous oil together with low-viscosity solvent. In addition, a detailed analysis of the rheological models of non-Newtonian fluids is carried out, which establishes a number of assumptions on the rheology model selection algorithm currently in use (limited number of rheological models, variability in model coefficient assignment, etc.). Ways of their elimination are proposed. Dependencies for determination of the dynamic viscosity coefficient of binary oil mixtures are investigated. Calculation of the parameters of the bituminous oil mixture with solvent is considered. Complex experimental studies on rheology mixture models of bituminous oil and solvent on the example of the Ashalchinsky field (Russia, Tatarstan) in a wide range of temperatures and concentrations of the solvent are conducted. A two-dimensional field of rheological models of the oil mixture is constructed, which makes it possible to determine the rheological model of the pumped oil mixture depending on the solvent concentration and the temperature of the mixture. Formulas for forecasting the rheological properties of the oil mixture on the basis of statistical processing of the results of experimental studies are theoretically substantiated. It is proven that the viscosity of binary oil mixtures in the Newtonian fluid field should be determined by a modified Arrhenius equation. The proposed models with a high degree of accuracy describe the rheological properties of the oil mixture. It is shown that in the case of complex mixtures, not one rheological model should be applied, but their hierarchy should be established depending on the solvent concentration and temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call