Abstract

Nonparametric regression and classification techniques are mostly the key data mining tools in explaining real life problems and natural phenomena where many effects often exhibit nonlinear behavior. The remotely sensed earth data collected by earth-observing satellites is degraded due to the absorption and scattering of solar radiation by atmospheric gases and aerosols. In order to use these data for information extraction, they must first be corrected for the atmospheric effects. Recent methods based on radiative transfer modelling still have many challenges including achieving high accuracy and developing real-time processing capability of large numbers of satellite images acquired with high temporal resolution and Large Field of View instruments. In this chapter, two state-of-the-art nonparametric tools, Multivariate Adaptive Regression Splines (MARS) and its successor Conic Multivariate Adaptive Regression Splines (CMARS), are reviewed within the frame of an earth science example. Both methods are utilized for the atmospheric correction of five sets of MODIS images taken over European Alps. The Simplified Method for Atmospheric Correction (SMAC), a simplified version of 6S radiative transfer model, is also applied on the image data sets for the removal of atmospheric effects. The performance of the models was evaluated by comparing their results with the MODIS atmospherically corrected surface reflectance product in terms of RMSE. Although MARS and CMARS approaches produce similar results on the data sets, they both outperform SMAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.