Abstract

In order to fully understand human evolutionary history through the use of molecular data, it is essential to include our closest relatives as a comparison. We provide here estimates of nucleotide diversity and effective population size of modern African ape species using data from several independent noncoding nuclear loci, and use these estimates to make predictions about the nature of the ancestral population that eventually gave rise to the living species of African apes, including humans. Chimpanzees, bonobos, and gorillas possess two to three times more nucleotide diversity than modern humans. We hypothesize that the last common ancestor (LCA) of these species had an effective population size more similar to modern apes than modern humans. In addition, estimated dates for the divergence of the Homo, Pan, and Gorilla lineages suggest that the LCA may have had stronger geographic structuring to its mtDNA than its nuclear DNA, perhaps indicative of strong female philopatry or a dispersal system analogous to gorillas, where females disperse only short distances from their natal group. Synthesizing different classes of data, and the inferences drawn from them, allows us to predict some of the genetic and demographic properties of the LCA of humans, chimpanzees, and gorillas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.