Abstract

Heretofore unavailable closed-form solutions are obtained for unbalanced symmetric as well as balanced unsymmetric angle-ply, moderately thick cylindrical shells subjected to axially varying (axisymmetric) internal pressure loading, under the framework of constant shear-angle theory (CST) or first-order shear deformation theory (FSDT), for any boundary condition. The solutions are obtained for four CST-based kinematic relations, which are extensions of the classical shell theories due to Donnell, Love-Timoshenko, Love-Riessner, and Sanders. The available CLT (classical lamination theory)-based solutions can be obtained from the present solutions in the limiting case of the two transverse shear moduli tending to infinity. Numerical results have been presented for two layer and three layer angle-ply cylindrical shells with simply-supported edges and have been compared with the corresponding CLT-based analytical solutions and also the LCST (layerwise constant shear angle theory)-based finite element solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.