Abstract
AimsThe main aim of this study was to investigate the moderate versus high-load resistance training on muscle strength, hypertrophy and protein synthesis signaling in rats. MethodsTwenty rats were randomly allocated into three groups as follow: control group (C, n = 6), high-load training (HL, n = 7) and moderate-load training (ML, n = 7). A ladder climb exercise was used to mimic resistance exercise. ML resistance training consisted of a moderate load, allowing performance at higher volume of load inherent to higher number of repetitions (8-16 climbing). HL resistance training consisted of progressively increase training load, with low volume of load (4-8 climbing). C group remained with physical activity restricted to their cage space. This experiment was conducted over a six-weeks period. Forty-eight hours after the last resistance training session the animals were euthanized for tissue collection. ResultsBoth HL and ML regimens promoted similar increases in muscle strength, elevated protein synthesis signaling demonstrated by increased skeletal muscle total/phosphorylated P-70S6K ratio and similar increases in plantaris and FHL muscle hypertrophy, all compared to control. All these similarities were demonstrated even though testosterone/cortisol ratio was higher in HL group compared to ML and control. ML regimen caused higher total training volume and soleus muscle hypertrophy, which was not demonstrated in HL group. ConclusionIn conclusion, results suggest that both HL and ML induce muscle hypertrophy and increase on strength in a similar way. ML moreover seems to favor slow fiber hypertrophy due the higher training volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.