Abstract

Large-scale atmospheric circulations associated with 133 moderate to heavy cold-weather precipitation events recorded at Mehrabad station in Tehran, Iran, during the period 1951–2013 are analysed. To this end, the performance of un-rotated, orthogonally rotated and obliquely rotated solutions of T-mode principal component analysis (PCA) is examined in classifying the atmospheric circulations into a few representative circulation types (CTs). The T-mode PCAs were applied to the 500-hPa geopotential height for the events in a domain from 10∘E to 70∘E and from 20∘N to 50∘N. The first six leading principal components were retained and then orthogonally and obliquely rotated using varimax and promax solutions, respectively. Statistical inter-comparison of the CTs obtained using the three solutions suggests that the obliquely rotated solution is the better choice for circulation classification in the present study. The six CTs obtained using the oblique rotation were then linked to the daily total precipitation and daily mean temperature variability at Tehran station as well as to the standardized anomalies of the daily total precipitation and mean daily temperature of a dense network of stations distributed across Iran. It is found that the CTs identified, though generally comparable in producing significant precipitation in Tehran, vary in their potential to bring cold weather and generate snowfall in Tehran specifically and in the country in general. While the first three CTs give rise to regional patterns of standardized precipitation anomalies centred in Tehran, the next three CTs leave a pronounced precipitation signature almost across the whole country. As regards the standardized temperature anomalies, with the exception of one CT that causes deep and widespread negative standardized anomalies over most parts of the country, the other CTs are characterized with a dipolar structure of a deep intrusion of cold weather to the west and prevailing warm weather to the east of the country.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.