Abstract

Peak stress in the fibrous cap of atherosclerotic plaque is largely determined by the cap thickness which cannot be accurately estimated in vivo. This parametric study investigates idealized atherosclerotic plaque geometries. Finite element modeling is applied to search for larger morphological features associated with high cap stresses. By varying seven geometrical and two loading parameters, 100 3D model geometries of atherosclerotic plaques in common iliac artery were generated. In each model peak cap stress was calculated, and statistical comparison of the geometries generating the highest and lowest peak cap stresses was performed. The analysis showed that, compared to geometries generating the lowest stresses, those with high peak cap stress had a significantly lower cap thickness, higher stenosis ratio, lower relative lipid core volume, and cap shoulder radius larger than lipid core radius. High cap stress was observed for cap thicknesses up to 0.13 mm. It can be concluded that vulnerable plaques contain thin fibrous cap, large stenosis ratio and only moderate small-radius lipid core which reaches the shoulder region of the fibrous cap.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call