Abstract
Moderate protein restriction throughout pregnancy in the rat leads to relative hyperlipidaemia and blunted insulin responsiveness of lipid fuel supply, and impairs foetal growth. The present study examined the basis for these changes. Isocaloric 8% (vs 20%) protein diets were provided throughout pregnancy. Rats were sampled at 19–20 days of gestation. Protein restriction enhanced triacylglycerol (TAG) secretion rates (estimated using Triton WR 1339) 1.6-fold ( P<0.05) in the post-absorptive state. Insulin infusion (4.2 mU/kg per min) decreased plasma TAG concentrations by 33% ( P<0.05) and 48% ( P<0.05) in control (C) and protein-restricted (PR) pregnant groups, an effect associated with suppression of TAG secretion by 42% ( P<0.05) and 51% ( P<0.01) respectively, in the C and PR groups. Since TAG concentrations decline more rapidly, while TAG secretion is enhanced, TAG utilisation during hyperinsulinaemia is enhanced in the PR group. We evaluated whether these changes were associated with dysregulation of lipolysis using adipocytes from two abdominal depots (mesenteric and parametrial). Noradrenaline-stimulated glycerol release was enhanced in parametrial adipocytes (by 40%; P<0.05) from PR pregnant rats. The anti-lipolytic action of insulin at low concentrations (≤15 μU/ml) was impaired by protein restriction (adipocytes from both depots). There was no evidence for altered intra-hepatic regulation of fatty acid (FA) disposal at the level of carnitine palmitoyltransferase. Our results demonstrate increased post-absorptive production of non-carbohydrate energy substrates (TAG and FA) as a consequence of mild protein restriction during pregnancy. These adaptations contribute to a homeostatic strategy to reduce the maternal requirement for gluconeogenesis from available amino acids, optimising the foetal protein supply. Protein restriction also enhances TAG turnover during hyperinsulinaemia. This effect is not a consequence of abnormal regulation of hepatic lipid metabolism by insulin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.