Abstract
This study aimed to investigate the influence of protein oxidation on the digestive properties of beef myofibrillar protein (MP). MP was treated with a hydroxyl radical-generating system containing various concentrations of H2O2. The increased content in a free sulfhydryl group and surface hydrophobicity indicated that oxidation treatment with 1 mM H2O2 induced unfolding of MP. Reducing and nonreducing SDS-PAGE results suggested that 10 mM H2O2 oxidation treatment resulted in aggregation of MP; meanwhile, the disulfide bond was the major covalent bond involved in aggregation. Peptidomics showed that peptides in the digestion products of MP were mainly derived from myosin tail. Moderate oxidation (1 mM H2O2) facilitated the release of peptide in the rod portion (S2) of myosin, whereas excessive oxidation (10 mM H2O2) inhibited peptide release in the light meromyosin region. This work presents insightful information for the crucial impact of oxidation on meat protein digestibility from the peptidomics perspective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.