Abstract

Rapid metabolism of lactate is an important aspect of bioenergetic adaptation in the brain during non-physiological conditions. The low grade hyperammonemia (HA) is a common condition in the patients with chronic hepatic encephalopathy (HE); however, biochemistry of lactate turnover during low grade HA remains poorly defined. The present article describes profile of lactate dehydrogenase (LDH) isozymes vis-a-vis lactate level in the brain slices exposed with 0.1-0.5 mM ammonia, found to exist in the brain during chronic HE. A significant increment in LDH activity coincided with a similar increase in lactate level in the brain slices exposed with 0.5 mM ammonia. This was consistent with a selective increment of LDH-4 that synthesizes lactate from pyruvate with a concomitant decline in LDH-1 which catalyzes conversion of lactate to pyruvate; resulting into ~3-fold increase in LDH-4/LDH-1 ratio in those brain slices. The PFK2 domain of PFK2/FBPase2 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) regulates glycolysis to maintain the pyruvate pool for lactate synthesis. The PFK2 expression was also observed to be increased ~2-fold (P < 0.001) in 0.5 mM ammonia treated brain slices. These findings provide enzymatic regulation of increased lactate turnover in the brain exposed with moderate HA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call