Abstract

The main contribution of this article is an asymptotic expression for the rate associated with moderate deviations of subgraph counts in the Erdős-Rényi random graph G ( n , m ) G(n,m) . Our approach is based on applying Freedman’s inequalities for the probability of deviations of martingales to a martingale representation of subgraph count deviations. In addition, we prove that subgraph count deviations of different subgraphs are all linked, via the deviations of two specific graphs, the path of length two and the triangle. We also deduce new bounds for the related G ( n , p ) G(n,p) model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.