Abstract

This paper studies moderate deviation behaviors of the generalized method of moments and generalized empirical likelihood estimators for generalized estimating equations, where the number of equations can be larger than the number of unknown parameters. We consider two cases for the data generating probability measure: the model assumption and local contaminations or deviations from the model assumption. For both cases, we characterize the first-order terms of the moderate deviation error probabilities of these estimators. Our moderate deviation analysis complements the existing literature of the local asymptotic analysis and misspecification analysis for estimating equations, and is useful to evaluate power and robust properties of statistical tests for estimating equations which typically involve some estimators for nuisance parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.