Abstract

Quantum state transfer involves two parties who use pre-shared entanglement and noiseless communication in order to transfer parts of a quantum state. In this work, we quantity the communication cost of one-shot state splitting in terms of the partially smoothed max-information. We then give an analysis of state splitting in the moderate deviation regime, where the error in the protocol goes sub-exponentially fast to zero as a function of the number of i.i.d. copies. The main technical tool we derive is a tight relation between the partially smoothed max-information and the hypothesis testing relative entropy, which allows us to obtain the expansion of the partially smoothed max-information for i.i.d. states in the moderate deviation regime. This then also establishes the moderate deviation analysis for other variants of state transfer such as state merging and source coding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.