Abstract

Stroke is a devastating complication in cardiovascular surgery, and neuronal damage is worsened by intracranial pressure elevation caused by cerebral venous circulatory disturbances (CVCD). However, we have previously reported that CVCD before cerebral ischemia decreases the infarct area. In the present study, focal cerebral ischemia was induced in spontaneously hypertensive rats by filament insertion through the carotid artery. Rats were divided into the following four groups: sham-operated, mild or severe venous congestion (VC), and DPCPX. The DPCPX group received the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) prior to mild VC. Behavior, infarct volume, edema and S-100 protein were evaluated among the four groups. The infarct volume rates in mild VC and severe VC groups were significantly less than that in sham-operated and DPCPX groups. However, the mortality of the severe VC group worsened in a time-dependent manner. We observed a significant decrease in edema in the mild VC group compared to the DPCPX group. Behavioral scores also indicated that the mild VC group had fewer neurological deficits than the other three groups, including the DPCPX group. We were able to induce rapid cerebral protection via adenosine A1 receptor activation by administering an appropriate degree of VC prior to cerebral ischemia produced by middle cerebral artery occlusion. Our work suggests possible mechanisms by which such effective VC may lead to cerebral protection and adenosine A1 receptor activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call