Abstract

A moderate amount of bending strains, ∼3% is found to be enough to induce the semiconductor-metal transition in Si nanowires of ∼4 nm diameter. The influence of bending on silicon nanowires of 1 nm to 4.3 nm diameter is investigated using molecular dynamics and quantum transport simulations. Local strains in nanowires are analyzed along with the effect of bending strain and nanowire diameter on electronic transport and the transmission energy gap. Interestingly, relatively wider nanowires are found to undergo semiconductor-metal transition at relatively lower bending strains. The effect of bending strain on electronic properties is then compared with the conventional way of straining, i.e. uniaxial, which shows that bending is a much more efficient way of straining to enhance the electronic transport and also to induce the semiconductor-metal transition in experimentally realizable Si nanowires.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call