Abstract

Mounting evidences have demonstrated that diet-induced obesity is associated with cognition impairment via increasing oxidative stress and inflammation in the brain. Atorvastatin (Ator, a HMG-CoA reductase inhibitor) is a cholesterol lowering drug. Studies have reported that Ator can ameliorate the development and progression of cognition impairment. Additionally, silent information regulator 1 (SIRT1) has been demonstrated to be beneficial in cognition impairment. However, the interaction between Ator and SIRT1 activation for cognition impairment remains unclear. This study aimed to identify a relationship between the use of Ator and cognition impairment induced by high-fat diet via Sirt1 activation. A total of 60 healthy male C57BL/6J mice were purchased and then divided into 6 groups, including normal diet group (control), a high-fat diet group (40%HFD, 40% energy from fat), a model group (60%HFD, 60% energy from fat), and model group treated with different doses of Ator (high-dose (80mg), moderate-dose (40mg), and low-dose (20mg) groups). All interventions took place for 7months. Metabolic phenotypes were characterized for body weight and analysis of serum lipid level. The level of cognition development was examined by Morris water maze (MWM) approach and novel object recognition test (NORT); besides, the expression of Creb1, Gap-43, BDNF, CaMKII, and ERKs of frontal cortex and hippocampus was determined by reverse transcription polymerase chain reaction (RT-PCR). Then, the levels of factors related to inflammation (TNF-a, IL-1β, HMGB1 and IL-6) and oxidation stress (SOD, MDA, CAT and GSH-Px) were assessed using commercially available kits. Finally, SIRT1 and its downstream molecules (Ac-FoxO1, Ac-p53, Ac-NF-κB, Bcl-2 and Bax) were evaluated by Western blot analysis. Compared with the 60% HFD group, body weight and serum lipid levels were significantly decreased in the Ator treated groups. The results of MWM and NORT, as well as the levels of Creb1, Gap-43, BDNF, CaMKII, and ERKs were markedly reversed in the moderate- and low-dose of Ator treated groups. Meanwhile, the expression of IL-1β, TNF-a, IL-6, HMGB1, and MDA was notably decreased, whereas the activity of SOD, CAT, and GSH-Px was increased. It was also revealed that the expression of SIRT1 was remarkably unregulated, the level of Bcl-2 was upregulated, and the content of Ac-FoxO1, Ac-p53, Ac-NF-κB, and Bax was downregulated in the moderate- and low-dose of Ator. Furthermore, results showed that the effect of moderate-dose of Ator was significantly greater than the low-dose of Ator. However, these effects were not observed in the high-dose of Ator. Our results showed that moderate- and low-dose of Ator can significantly attenuate cognition impairment induced by HFD through its antioxidant and anti-inflammatory functions related to SIRT1 activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call