Abstract

Itigi thicket is a unique vegetation type for Tanzania and is regarded as ecologically sensitive, thus earmarked for conservation. The objective of this study was to develop species-specific biomass models for two dominating thicket species and mixed-species biomass models for associate trees in Itigi thicket vegetation. Data were collected through destructive sampling (60 thicket clumps and 30 associate trees) and covered two dominant thicket species: Combretum celastroides Laws and Pseudoprosopsis fischeri (Tab) Harms and five dominant associate tree species: Canthium burtii Bullock sensu R. B. Drumm, Cassipourea mollis (R. E. Fr.) Alston, Haplocoelum foliolosum L, Lannea fulva (Engl.) England Vangueria madagascariensis J. F. Gmelin. Different nonlinear multiplicative model forms were tested, and models were selected based on Akaike Information Criterion. Large parts of the variation in biomass of thicket clumps were explained by basal area weighed mean diameter at breast height of stems in the clump and number of stems in the clump, i.e. for aboveground biomass (AGB) and belowground biomass (BGB) of C. celastroides up to 89% and 82% respectively and for AGB and BGB of P. fischeri up to 96% and 95% respectively. For associate trees most variation was explained by diameter at breast height (dbh) alone, i.e. up to 85% and 69% for ABG and BGB respectively. Although there will be some uncertainties related to biomass estimates for large areas, for practical reasons, we recommend the selected models to be applied to the entire area where Itigi thicket extends outside our study site, and also to those thicket and associate tree species present that were not included in the data used for modelling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call