Abstract
The thermal conductivity of non-metallic nano- and microstructured materials is a key parameter when considering wear resistant coatings. Here, different models of phonon transport and estimation of thermal conductivity are analyzed. The hopping mechanism of phonon transport was found to be applicable for small-grain-size materials in understanding thermal conductivity, whereas large grain size materials can be studied using the correlation function approach. The Chapman–Enskog approach to the Boltzmann transport equation assuming that the transport of phonons is controlled by scattering on the grain boundaries has been analyzed. The Fourier law of thermal conductivity is obtained with the thermal conductivity inversely proportional to the specific surface of the boundaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.