Abstract

Recent years have brought more precise temperature measurements of the low-density intergalactic medium (IGM). These new measurements constrain the processes that heated the IGM, such as the reionization of H I and of He II. We present a semi-analytical model for the thermal history of the IGM that follows the photoheating history of primordial gas. Our model adopts a multizone approach that, compared to previous models, more accurately captures the inhomogeneous heating and cooling of the IGM during patchy reionization. We compare our model with recent temperature measurements spanning z = 1.6-4.8, finding that these measurements are consistent with scenarios in which the He II was reionized at z = 3-4 by quasars. Significantly longer duration or higher redshift He II reionization scenarios are ruled out by the measurements. For hydrogen reionization, we find that only low-redshift and high-temperature scenarios are excluded. For example, a model in which the IGM was heated to 30 000 K when an ionization front passed, and with hydrogen reionization occurring over 6 < z < 9, is ruled out. Finally, we place constraints on how much heating could owe to TeV blazars, cosmic rays, and other non-standard mechanisms. We find that by z = 2, a maximum of 1 eV of additional heat could be injected per baryon over standard photoheating-only models, with this limit becoming <~0.5 eV at z > 3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call