Abstract

There are two ways of calculating the spread of a gene for altruism. One, originally proposed by Hamilton, is to allow for the effects of the gene on the survival and reproduction of collateral relatives of the individual carrying it (i.e., “inclusive fitness”); this leads to the condition k > 1/r for the spread of the gene, where k is a benefit/cost ratio. The other is to count only the direct offspring of a carrier, but to allow for the altruistic acts performed toward the carrier by its relatives (“neighbour modulated fitness” or “personal fitness”). A recent personal fitness model ( L. L. Cavalli Sforza and M. W. Feldman, 1978, Theor. Pop. Biol. 14, 268–280) analyses parent-offspring and sib-sib altruism and concludes that k > 1/r is applicable only when fitness components are combined additively. The present paper analyses some simple models in which the phenotypic effects are carefully specified. It is concluded that it is sometimes, but not always, appropriate to combine fitness components additively. The relative roles of inclusive and personal fitness models are compared. The former have the virtue of being easier to think about in causal terms; and the latter of incorporating the evolution of altruism into the corpus of population genetics as an example of frequency-dependent selection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call