Abstract
We have developed algorithms for combining fluorescence resonance-energy transfer (FRET) efficiency measurements into structural models which predict the relative positions of the chemical groups used in FRET. We used these algorithms to construct models of the actin monomer and filament derived solely from FRET measurements based on seven distinct loci. We found a mirror-image pair of monomer models which best fit the FRET data. One of these models agrees well with the atomic-resolution crystal structure recently published by Kabsch et al. in Heidelberg [Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. & Holmes, K. C. (1990) Nature 347, 37-44]. The root-mean-square deviation between this FRET model and the crystal structure was about 0.9 nm. Other macromolecular models assembled from FRET measurements are likely to have a similar resolution. The largest discrepancy was for the Cys10 locus which deviated 1.44 nm from the crystal position. We discuss the limitations of the FRET method that may have contributed to this discrepancy, and conclude that the Cys10 FRET data have probably located Cys10 incorrectly in the FRET monomer model. Using the FRET monomer models, we found three orientations in the filament which best fit the intermonomer FRET data. These orientations differ substantially from the atomic-resolution filament model proposed by the Heidelberg group [Holmes, K., Popp, D., Gebhard, W. & Kabsch, W. (1990) Nature 347, 44-49], largely because of the discrepancies in the Cys10 data. These data should probably be excluded from the analysis; however, this would leave too few measurements to assemble a filament model. In the near future, we hope to obtain additional FRET measurements to other actin loci so that the filament modelling can be done without the Cys10 data.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.