Abstract

Due to their high biocompatibility and osteoconductivity, bioactive silicate glasses are the core components of biomaterials used to repair, restore and regenerate bone and tissues in the human body. One of the key features, which control their bioactivity, is the fast surface dissolution in a biological medium, with the release of critical amounts of ions in the surrounding environment. Being able to understand these inorganic processes at the atomistic level is essential if a more rational approach to the use of these materials is sought. Over the past five years, atomistic simulations of bioglasses have revealed details of bulk structural features which affect the glass dissolution and thus its bioactivity, such as the connectivity of the silicate network and the tendency to form chains, rings and clusters. Further simulations have started to focus directly on the details of the glass surface and of its reactivity in an aqueous environment. This article reviews recent computational approaches used to investigate the properties of bioglasses crucial for their bioactive behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.