Abstract

This paper begins a study of one- and two-variable function space models of irreducible representations of q analogs of Lie enveloping algebras, motivated by recurrence relations satisfied by q-hypergeometric functions. The algebras considered are the quantum algebra Uq(su2) and a q analog of the oscillator algebra (not a quantum algebra). In each case a simple one-variable model of the positive discrete series of finite- and infinite-dimensional irreducible representations is used to compute the Clebsch–Gordan coefficients. It is shown that various q analogs of the exponential function can be used to mimic the exponential mapping from a Lie algebra to its Lie group and the corresponding matrix elements of the ‘‘group operators’’ on these representation spaces are computed. It is shown that the matrix elements are polynomials satisfying orthogonality relations analogous to those holding for true irreducible group representations. It is also demonstrated that general q-hypergeometric functions can occur as basis functions in two-variable models, in contrast with the very restricted parameter values for the q-hypergeometric functions arising as matrix elements in the theory of quantum groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.