Abstract

In the absence of global turbulence, solid particles in the solar nebula tend to settle into a thin layer in the central plane. Shear between this layer and pressure-supported gas produces localized turbulence in the midplane; the thickness of the particle layer is determined by balance between settling and turbulent diffusion. A numerical model is described, which allows computation of the vertical structure of a layer of particles of arbitrary size, with self-consistent distributions of particle density, turbulent velocity, and radial fluxes of particles and gas. Effects of varying particle size and the abundances of solids and gas are evaluated. If the surface density of solids is increased by an order of magnitude over nominal solar abundance, the peak density within a layer of small particles can approach the critical value needed for gravitational instability. However, depletion of the nebular gas is much less effective for raising the density of such a layer to the critical value, due to decreased coupling of particles to the gas as the density of the gas decreases. The variation of radial particle flux with surface density of the particle layer is not consistent with secular instability of the layer driven by gas drag.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.