Abstract

Multiple system atrophy (MSA) is a neurodegenerative disease with diverse clinical manifestations, including parkinsonism, cerebellar syndrome, and autonomic failure. Pathologically, MSA is characterized by glial cytoplasmic inclusions in oligodendrocytes, which contain fibrillary forms of α-synuclein. MSA is categorized as one of the α-synucleinopathy, and α-synuclein aggregation is thought to be the culprit of the disease pathogenesis. Studies on MSA pathogenesis are scarce relative to studies on the pathogenesis of other synucleinopathies, such as Parkinson’s disease and dementia with Lewy bodies. However, recent developments in cellular and animal models of MSA, especially α-synuclein transgenic models, have driven advancements in research on this disease. Here, we review the currently available models of MSA, which include toxicant-induced animal models, α-synuclein-overexpressing cellular models, and mouse models that express α-synuclein specifically in oligodendrocytes through cell type-specific promoters. We will also discuss the results of studies in recently developed transmission mouse models, into which MSA brain extracts were intracerebrally injected. By reviewing the findings obtained from these model systems, we will discuss what we have learned about the disease and describe the strengths and limitations of the models, thereby ultimately providing direction for the design of better models and future research.

Highlights

  • Multiple system atrophy (MSA) is a rapidly progressive sporadic adult-onset neurodegenerative disorder

  • MSA is a neurodegenerative disease with clinical symptoms similar to those of Parkinson’s disease (PD) and cerebellar ataxia

  • We summarized toxin-induced models, in vitro and in vivo genetic models, and transmission models for studying α-synuclein pathology and behavioral symptoms in MSA (Fig. 3)

Read more

Summary

Introduction

Multiple system atrophy (MSA) is a rapidly progressive sporadic adult-onset neurodegenerative disorder. The presence of GCIs and the excessive accumulation of α-synuclein in the oligodendrocytes are accompanied by neuronal degeneration, brain atrophy, demyelination, and mutation of nerve cells in MSA patients[25,26]. Several studies have reported that there is little to no αsynuclein expression in mature oligodendrocytes in the human brain[11,28,29].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call