Abstract

ABSTRACTNew, high-resolution MARCS synthetic spectra have been calculated for more than a dozen mixtures of the metals allowing, in turn, for variations in C:N:O, [CNO/Fe], and enhanced abundances of C, O, Mg, and Si. Bolometric corrections (BCs) for many of the broad-band filters currently in use have been generated from these spectra. Due to improved treatments of molecules that involve atoms of C, N, and O, the BCs for UV and blue passbands, in particular, differ substantially from those derived from previous MARCS models. These differences, and the effects on the BCs of varying the abundances of the metals, are shown in a number of instructive plots. Stellar evolutionary grids for −2.5 ≤ [Fe/H] ≤−0.5 have also been computed for the different mixtures. Isochrones based on these tracks are intercompared on the theoretical H–R diagram and on a few of the colour–magnitude diagrams that can be constructed from HST Wide Field Camera 3 (WFC3) F336W, F438W, F606W, F814W, F110W, and F160W observations. For the first application of these models, isochrones have been fitted to WFC3 photometry of the globular cluster NGC 6496 from the HST UV Legacy Survey, with very encouraging results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.