Abstract

AbstractSummary: We study the impact of topological disorder on the mechanical response of hyperbranched macromolecules from a theoretical and numerical perspective. The polymer models are generated using a bond switching algorithm, and the emerging systems are described within the Zimm and Rouse pictures of macromolecular dynamics. The topological disorder is manifest in the frequency‐dependent dynamic moduli, $G^*(\omega)$. These are clearly distinct from that of regular hyperbranched fractals of the same size, and they do not obey simple scaling rules. The dynamic moduli reflect the short‐range order inherent in the model, and we thus suggest that the extent of disorder in branched tree‐like polymers may be well‐estimated experimentally using $G^*(\omega)$.Model of an irregular hyperbranched polymer.magnified imageModel of an irregular hyperbranched polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.