Abstract
The mechanical response of complex concentrated alloys (CCAs) deviates from that of their pure and dilute counterparts due to the introduction of a combinatorially sized chemical concentration dimension. Compositional fluctuations constantly alter the energy landscape over which dislocations move, leading to line roughness and the appearance of defects such as kinks and jogs under stress and temperature conditions where they would ordinarily not exist in pure metals and dilute alloys. The presence of such chemical defects gives rise to atomic-level mechanisms that fundamentally change how CCAs deform plastically at meso- and macroscales. In this article, we provide a review of recent advances in modeling dislocation glide processes in CCAs, including atomistic simulations of dislocation glide using molecular dynamics, kinetic Monte Carlo simulations of edge and screw dislocation motion in refractory CCAs, and phase-field models of dislocation evolution over complex energy landscapes. We also discuss pathways to develop comprehensive simulation methodologies that connect an atomic-level description of the compositional complexity of CCAs with their mesoscopic dislocation-mediated plastic response with an eye toward improved design of CCA with superior mechanical response.Graphical abstract
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.