Abstract

PWM (Pulse width modulated) solenoid valves possess the advantages of low cost, high flow rate gain, and simple structure. However, the use of a PWM solenoid valve causes both discontinuity and nonlinearity of the flow rate; this results in difficulties of modeling and of control. This paper presents our work on modelling a pneumatic PWM solenoid valve for engineering applications. Two models are presented: one is the instantaneous mass flow rate model which can be used in the simulation to study the dynamic behavior of pneumatic PWM control systems; another model is the equivalent mass flow rate model which is developed for facilitating the synthesis of pneumatic PWM servomechanisms. An equation for determining the maximum operating modulation ratio of the PWM solenoid valve is also presented. Simulated results using the established models are compared with the experimental results for both the static characteristics of a PWM solenoid valve and the dynamic behavior of a system composed of a PWM solenoid valve and a constant volume chamber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.