Abstract

Countries need to assess changes in the carbon stocks of forest soils as a part of national greenhouse gas (GHG) inventories under the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol (KP). Since measuring these changes is expensive, it is likely that many countries will use alternative methods to prepare these estimates. We reviewed seven well-known soil carbon models from the point of view of preparing country-scale soil C change estimates. We first introduced the models and explained how they incorporated the most important input variables. Second, we evaluated their applicability at regional scale considering commonly available data sources. Third, we compiled references to data that exist for evaluation of model performance in forest soils. A range of process-based soil carbon models differing in input data requirements exist, allowing some flexibility to forest soil C accounting. Simple models may be the only reasonable option to estimate soil C changes if available resources are limited. More complex models may be used as integral parts of sophisticated inventories assimilating several data sources. Currently, measurement data for model evaluation are common for agricultural soils, but less data have been collected in forest soils. Definitions of model and measured soil pools often differ, ancillary model inputs require scaling of data, and soil C measurements are uncertain. These issues complicate the preparation of model estimates and their evaluation with empirical data, at large scale. Assessment of uncertainties that accounts for the effect of model choice is important part of inventories estimating large-scale soil C changes. Joint development of models and large-scale soil measurement campaigns could reduce the inconsistencies between models and empirical data, and eventually also the uncertainties of model predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.