Abstract

The ability to model the kinetics of wine fermentation enables the early detection of abnormal, sluggish or stuck fermentations, and the prediction of present and future rates of energy, CO2 and ethanol vapor release. While several wine fermentation models have been published, there are only a few that have been successfully adopted for commercial practice. In this work, the mathematical descriptions of wine fermentation are reviewed and compared. The common features of these include descriptions for the kinetics of yeast growth; substrate and nutrient consumption; product formation; and total and viable cell mass. Additional features include the inhibition of growth by ethanol; competitive inhibition of glucose and fructose uptake; glycerol formation; and the calculation of density from solution composition and solute properties. Three models were selected to compare their ability to describe the sugar, ethanol, biomass and nitrogen of benchtop fermentations at four temperatures, previously published. The models are assessed for their goodness of fit to the data in synthetic-medium fermentations and their suitability for analyzing and predicting commercial wine fermentations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.