Abstract

A wide-angle model for water-wave propagation on an irregular bathymetry is developed based on the linear mild-slope equation. The spectral model decomposes the incident wavetrain into directional modes, or an angular spectrum. The effect of the bottom topography is shown to force the generation of additional directional wave modes. Nonlinearity is incorporated in the model by correcting the wave parameters iteratively using an empirical nonlinear dispersion relationship which is approximately valid over the entire range of water depths.Numerical examples are presented for waves incident on a transverse bar field, a laboratory experiment involving wave focusing over an elliptic shoal on a sloping beach for which detailed measurements are available and for waves focusing behind a circular shoal resting on a flat botom. The application of the model is limited to cases in which the model domain is rectangular and the depth variation in the lateral direction is small if waves of large incident angle are modelled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.