Abstract

Generalized linear models are often assumed to fit propensity scores, which are used to compute inverse probability weighted (IPW) estimators. To derive the asymptotic properties of IPW estimators, the propensity score is supposed to be bounded away from zero. This condition is known in the literature as strict positivity (or positivity assumption), and, in practice, when it does not hold, IPW estimators are very unstable and have a large variability. Although strict positivity is often assumed, it is not upheld when some of the covariates are unbounded. In real data sets, a data-generating process that violates the positivity assumption may lead to wrong inference because of the inaccuracy in the estimations. In this work, we attempt to conciliate between the strict positivity condition and the theory of generalized linear models by incorporating an extra parameter, which results in an explicit lower bound for the propensity score. An additional parameter is added to fulfil the overlap assumption in the causal framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.