Abstract

Late diagnosis is one of the reasons that head and neck squamous cell carcinoma (HNSCC) patients experience relative five-year survival rates ranging from 40%-66%. The molecular-level differences between early and advanced stage HNSCC may provide insight into therapeutic targets and strategies. Previous bioinformatics studies have shown mixed or limited results in identifying gene and protein markers and in developing models for discriminating between early and advanced stage HNSCC. Thus, we have investigated models for HNSCC stage prediction using RNAseq and reverse phase protein array data from The Cancer Genome Atlas and The Cancer Proteome Atlas. We systematically assessed individual and ensemble binary classifiers, using filter and wrapper feature selection methods, to develop several well-performing models. In particular, integrated models harnessing both data types consistently resulted in better performance. This study identifies informative protein and gene feature sets which may increase understanding of HNSCC progression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.