Abstract
Computer modeling provides a quantitative approach to a better understanding of actual carbonate cyclic sequences. To model carbonate cycles, the authors can use water-depth-dependent sedimentation rate for each facies, an initial lag time, linear subsidence, tidal range, and period and amplitude of sea-level oscillation about a horizontal datum. Tidal-flat-capped cycles up to a few meters thick result from low-amplitude sea-level oscillation of a few meters and short lag times. Nonerosive caps reflect sea-level lowering being balanced by subsidence, and basinward migration of the shoreline not exceeding tidal-flat progradation rate. When higher amplitude sea-level oscillations occur, the tidal flats are abandoned on the inner shelf during sea-level fall, because seaward movement of the strandline outpaces progradation rate of flats. Increased amplitude also results in sea-level falling faster than flats can subside, so that disconformities with thick vadose profiles develop. High-amplitude (100 m or more) oscillations result in incipient drowning of platforms and juxtaposition of deep-water facies against shallow-water facies within cycles. Sea level falls before the platform can build to the sea-level highstand, and the shoreline migrates much more rapidly than tidal flats can prograde; thus, cycles are disconformity-bounded and lack tidal-flat caps. 10 references.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.