Abstract

In this paper, we derive an expression for the grand canonical partition function for a fluid of hot, rotating massless scalar field particles in the Einstein universe. We consider the number of states with a given energy as one increases the angular momentum so that the fluid rotates with an increasing angular velocity. We find that at the critical value when the velocity of the particles furthest from the origin reaches the speed of light, the number of states tends to zero. We illustrate how one can also interpret this partition function as the effective action for a boosted scalar field configuration in the product of three dimensional de Sitter space and ${S}^{1}$. In this case, we consider the number of states with a fixed linear momentum around the ${S}^{1}$ as the particles are given more and more boost momentum. At the critical point when the spacetime is about to develop closed timelike curves, the number of states again tends to zero. Thus it seems that quantum mechanics naturally enforces the chronology protection conjecture by superselecting the causality violating field configurations from the quantum mechanical phase space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.