Abstract
The paper presents an efficient modeling technique for iron core coils and transformers based on a separation of the nonlinear inductive effects from the linear capacitive effects. The magnetic field is numerically analyzed neglecting the displacement currents. The distributed capacitive effects in the insulation between coils are concentrated in an Extended II scheme, an infinite circuit which is optimally reduced to a finite one. The separately extracted models are integrated in a common discrete (lumped) system. This global model obtained by postprocessing the numerical field solution was used to study the transmission of atmospheric lightning overvoltages to the secondary windings of power transformers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.