Abstract

Abstract We discuss exchangeability and independence in the setting of σ-complete Riesz MV-algebras. We define and link to each other the notions of exchangeability and distribution law for a sequence of observables (i.e. non classical random variables), as well as the notion of independence for a sequence of algebras. We obtain two categorical dualities for σ-complete Riesz MV-algebras endowed with states and we define a “canonical” state on the coproduct of a sequence of probability Riesz tribes, giving a weak version of de Finetti’s result. Finally, we discuss statistical models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.