Abstract

Many biological systems exhibit complex temporal behavior that cannot be adequately characterized by a single time constant. This dynamics, observed from single channels up to the level of human psychophysics, is often better described by power-law rather than exponential dependences on time. We develop and study the properties of neural models with scale-invariant, power-law adaptation and contrast them with the more commonly studied exponential case. Responses of an adapting firing-rate model to constant, pulsed, and oscillating inputs in both the power-law and exponential cases are considered. We construct a spiking model with power-law adaptation based on a nested cascade of processes and show that it can be "programmed" to produce a wide range of time delays. Finally, within a network model, we use power-law adaptation to reproduce long-term features of the tilt aftereffect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.