Abstract

In 1997, Ross Kelly and his coworkers at Boston College reported their results from an experiment with an intriguing premise (Kelly et al., 1997; see also Kelly et al., 1998). They had synthesized the molecule shown in figure 12.1. It was designed to be a “molecular ratchet,” so named because it appeared that it should undergo internal rotation about the A—B bond more readily in one direction than the other. The reason for thinking this might occur was that the benzophenanthrene moiety—the “pawl” of the ratchet—was anticipated to be helical. Thus, in some sense, this might be an inverse ratchet where the asymmetry dictating the sense of rotation would reside in the pawl rather than in the “teeth” on the “wheel” (the triptycene unit) as it does in a normal mechanical ratchet. Kelly and coworkers designed an elegant experiment to determine whether their molecular ratchet was functioning as anticipated, and they were (presumably) disappointed to find that it was not—internal rotation about the A—B bond occurred at equal rates in each direction. In 1998 Davis pointed out that occurrence of the desired behavior of the molecular ratchet would have constituted a violation of the second law of thermodynamics (Davis, 1998). With hindsight, I think most chemists would agree that Davis’s critique is unassailable, although the appeal of the mechanical analogy was so strong that I imagine those same chemists would also understand if Kelly et al. had overlooked the thermodynamic consequences of their proposal in the original design of the experiment. But now comes the interesting question: Suppose Kelly et al. had been fully aware that their experiment, if successful, would undermine the second law of thermodynamics, should they have conducted it anyway? Davis, in his critique writes: . . .Some would argue that this experiment was misconceived. To challenge the Second Law may be seen as scientific heresy (a nice irony, considering the Jesuit origins of Boston College), and the theoretical arguments against molecular ratchets and trapdoors are well developed. . . .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call