Abstract

We present three different robust frameworks using probabilistic ambiguity descriptions of the data in least squares problems. These probability ambiguity descriptions are given by: (1) confidence region over the first two moments; (2) bounds on the probability measure with moments constraints; (3) the Kantorovich probability distance from a given measure. For the first case, we give an equivalent formulation and show that the optimization problem can be solved using a semidefinite optimization reformulation or polynomial time algorithms. For the second case, we derive the equivalent Lagrangian problem and show that it is a convex stochastic programming problem. We further analyze three special subcases: (i) finite support; (ii) measure bounds by a reference probability measure; (iii) measure bounds by two reference probability measures with known density functions. We show that case (i) has an equivalent semidefinite programming reformulation and the sample average approximations of case (ii) and (iii) have equivalent semidefinite programming reformulations. For ambiguity description (3), we show that the finite support case can be solved by using an equivalent second order cone programming reformulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.