Abstract

O objetivo deste trabalho foi desenvolver árvores de decisão como modelos de alerta da ferrugem-do-cafeeiro em lavouras de café (Coffea arabica L.) com alta carga pendente de frutos. Dados de incidência mensal da doença no campo coletados durante oito anos foram transformados em valores binários considerando limites de 5 e 10 pontos percentuais na taxa de infecção. Foi gerado um modelo para cada taxa de infecção binária a partir de dados meteorológicos e do espaçamento entre plantas. O alerta é indicado quando a taxa de infecção, prevista para o prazo de um mês, atingir ou ultrapassar o respectivo limite. A acurácia do modelo para o limite de 5 pontos percentuais foi de 81%, por validação cruzada, chegando até 89% segundo estimativa otimista. Esse modelo apresentou bons resultados para outras medidas de avaliação importantes, como sensitividade (80%), especificidade (83%) e confiabilidades positiva (79%) e negativa (84%). O modelo para o limite de 10 pontos percentuais teve acurácia de 79%, e não apresentou o mesmo equilíbrio entre as demais medidas. Em conjunto, esses modelos podem auxiliar na tomada de decisão referente ao controle da ferrugem-do-cafeeiro no campo. A indução de árvores de decisão é alternativa viável às técnicas convencionais de modelagem e facilita a compreensão dos modelos.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.