Abstract
The recent emergence of Zika virus (ZIKV) in susceptible populations has led to an abrupt increase in microcephaly and other neurodevelopmental conditions in newborn infants. While mosquitos are the main route of viral transmission, it has also been shown to spread via sexual contact and vertical mother-to-fetus transmission. In this latter case of transmission, due to the unique viral tropism of ZIKV, the virus is believed to predominantly target the neural progenitor cells (NPCs) of the developing brain. Here a method for modeling ZIKV infection, and the resulting microcephaly, that occur when human cerebral organoids are exposed to live ZIKV is described. The organoids display high levels of virus within their neural progenitor population, and exhibit severe cell death and microcephaly over time. This three-dimensional cerebral organoid model allows researchers to conduct species-matched experiments to observe and potentially intervene with ZIKV infection of the developing human brain. The model provides improved relevance over standard two-dimensional methods, and contains human-specific cellular architecture and protein expression that are not possible in animal models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.