Abstract

The numerical simulation of free surface flows that alternately flood and dry out over complex topography is a formidable task. The model equation set generally used for this purpose is the two-dimensional (2D) shallow water wave model (SWWM). Simplified forms of this system such as the zero inertia model (ZIM) can accommodate specific situations like slowly evolving floods over gentle slopes. Classical numerical techniques, such as finite differences (FD) and finite elements (FE), have been used for their integration over the last 20–30 years. Most of these schemes experience some kind of instability and usually fail when some particular domain under specific flow conditions is treated. The numerical instability generally manifests itself in the form of an unphysical negative depth that subsequently causes a run-time error at the computation of the celerity and/or the friction slope. The origins of this behaviour are diverse and may be generally attributed to: 1. The use of a scheme that is inappropriate for such complex flow conditions (mixed regimes). 2. Improper treatment of a friction source term or a large local curvature in topography. 3. Mishandling of a cell that is partially wet/dry. In this paper, a tentative attempt has been made to gain a better understanding of the genesis of the instabilities, their implications and the limits to the proposed solutions. Frequently, the enforcement of robustness is made at the expense of accuracy. The need for a positive scheme, that is, a scheme that always predicts positive depths when run within the constraints of some practical stability limits, is fundamental. It is shown here how a carefully chosen scheme (in this case, an adaptation of the solver to the SWWM) can preserve positive values of water depth under both explicit and implicit time integration, high velocities and complex topography that may include dry areas. However, the treatment of the source terms: friction, Coriolis and particularly the bathymetry, are also of prime importance and must not be overlooked. Linearization with a combination of switching between explicit–implicit integration can overcome the ‘stiffness’ of the friction and Coriolis terms and provide stable numerical integration. The treatment of the bathymetry source term is much more delicate. For cells undergoing a transient wet–dry process, the imposition of zero velocity stabilizes most of the approximations. However, this artificial zero velocity condition can be the cause of considerable error, especially when fast moving fronts are involved. Besides these difficulties linked with the internal position of the front within a cell versus the limited resolution of a numerical grid, it appears that the second derivative that defines whether the bed is locally convex or concave is a key indicator for stability. A convex bottom may lead to unbounded solutions. It appears that this behaviour is not linked to the numerics (numerical scheme) but rather to the mathematical theory of the SWWM. These concerns about stability have taken precedence, until now, over the crucial and related question of accuracy, especially near a moving front, and how these possible inaccuracies at the leading edge may affect the solution at interior points within the domain. This paper presents an in depth, fully two-dimensional space analysis of the aforementioned problem that has not been addressed before. The purpose of the present communication is not to propose what could be viewed as a ‘final solution’, but rather to provide some key considerations that may reveal the ingredients and insight necessary for the development of accurate and robust solutions in the future. © 1998 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call